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Symmetries of the time-dependent N-dimensional oscillator 

G E Prince and C J Eliezer 
Departments of Mathematics, La Trobe University, Bundoora 3083, Victoria, Australia 

Received 19 March 1979 

Abstract. The study of the symmetry group of the time-dependent oscillator in Ndimen- 
sions with equation of motion X I  + f 1 2 ( t ) x ,  = 0, i = 1, . . . , N, gives the full symmetry group 
SL(N + 2, R) of N 2  + 4 N  + 3 operators. The Noether subgroup consisting of $ ( N 2  + 3N + 6) 
operators and the resulting constants of motion are given. A table of the commutation 
relations between the operators gives the structure constants of the associated Lie algebras. 

1. Introduction 

Two approaches to the treatment of the symmetries of a dynamical system have been 
widely used. Noether’s theorem (Noether 1918) provides a powerful and well 
established method of constructing a group of transformations which leaves the action 
integral invariant (the system under investigation must have a Lagrangian formulation). 
For each transformation in the group the method enables the determination of a 
corresponding constant of motion. The other method, utilising Lie’s theory of 
differential equations (Lie 1891, 1922) deals with those transformations which leave 
the equation of motion invariant. The Lie method in general gives rise to a larger group 
than the Noether method. However, unlike the latter the former does not appear to 
yield constants of motion in a straightforward manner. 

For the one-dimensional harmonic oscillator given by the equation of motion 

x + w 2 x = o ,  (1) 
where w is a constant, the Noether method leads to a group of five one-parameter 
transformations and five associated constants of motion. Of these five constants of 
motion, only two are functionally independent. The corresponding two trans- 
formations form an Abelian subgroup of the Noether group. 

Lie’s theory of differential equations leads to a ‘full’ symmetry group of eight 
one-parameter transformations (Anderson and Davison 1974). It has been identified 
as SL(3, R) (Wulfman and Wybourne 1976). These authors explored properties of the 
motion without consideration of the solutions, through the SO(3) subgroup of SL(3, R). 

Lutzky (1978a) subsequently investigated the connection between the Noether 
transformations and the full group of transformations, and found the former to be a 
five-parameter subgroup of the latter. Moreover, the remaining three transformations 
of the full group are necessary for the description of certain features of the motion. Thus 
both approaches are important in the study of the symmetries. 

An obvious generalisation of the problem is to the time-dependent oscillator with 
equation of motion 

(2) i + f12(t)x = 0 
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where n(t) is a given function of time. Lewis (1968) has derived a conserved quantity 
for the one-dimensional case by a method other than that of Noether, and it is of interest 
to construct it using Noether’s theorem. Lutzky (1978b) focuses his attention on a 
particular transformation satisfying Noether’s criterion to obtain the Lewis invariant. 
Eliezer (1978) obtains it along with four other conserved quantities (only two of which 
are functionally independent, as for the simple harmonic oscillator) in a treatment of the 
one-dimensional time-dependent oscillator both for the Noether subgroup and the 
complete symmetry group. In the same paper Eliezer deals with the Noether problem 
for the time-dependent, three-dimensional oscillator. 

This paper deals with some additional features of the problem along with its 
extension to N dimensions. 

We sketch the salient aspects of the time-dependent oscillator previously known in 
one dimension for clarity. A brief outline of Lie’s theory and the calculation of the 
group generators follows. The next section deals with the Noether subgroup: we obtain 
the generators by selection from the full group. The constants of motion are also 
calculated. In the penultimate section we explore the group structure via the associated 
Lie algebra and identify the full group as SL(N + 2, R). Finally we comment upon the 
role of the constants in the group structure. 

2. The time-dependent oscillator 

The oscillator with equation of motion 

i + 0 2 ( t ) x  = 0 (2) 

where n(t) is a given function of time has arisen in a variety of problems, an old one 
being oscillations of a lengthening pendulum (Poe 1845). There has been a revival of 
interest in this equation since the work of Lewis (1968), who showed that it is possible to 
construct an invariant for this system, namely 

I = ; [ x 2 / p 2 + ( p x - ~ x ) 2 ]  ( 3 )  

/5 + n 2 p  = p-3 .  

where p ( t )  is a function satisfying the ‘auxiliary’ equation 

(4) 

Eliezer and Gray (1976) have given a physical interpretation for p. The one-dimen- 
sional motion given by (2) is considered as the projection of a two-dimensional motion 
in which the radius vector has length p and rotates with angular velocity 

e = p-2. ( 5 )  

The relations between the solutions of (2) and (4) have been variously reported (Pinney 
1950, Lewis 1968, Eliezer and Gray 1976, Lutzky 1978b, Eliezer 1978). In our case we 
need to note that if x1 and x 2  are independent solutions of (2), then the general solution 
of (4) is given by 

p = (AX:  + Bx: + 2 C ~ 1 ~ 2 ) ” ~  (6) 

A B  - C 2  = (7) 

where A,  B, C are constants such that 
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is the Wronskian (a constant). 

written as 
Moreover, if p' is a particular solution of (4), then the general solution of (2) may be 

x = p'(D cos e + E  sin e). (9) 

3. Lie symmetry groups 

The study of the groups of transformations that leave a differential equation invariant 
was among the pioneering contributions of Sophus Lie. In particular, he considered the 
invariance of Newton's equation of motion of a free particle. 

The main ideas of the theory may be found in Bluman and Cole (1974). An 
infinitesimal point transformation 

t = t + Sa&(x, t )  xi = X I  + 6 a q  (x, t )  (10) 

is generated by the operator 

a a 
at d X i  

V = t ( x ,  t)-+71(x, t)-. 

To see the induced variations in higher derivatives, the n-times extended group 
operator to be used is 

where 

d d  a a 
dt - at  8x1 I 
--- - + I I - + *  . . + x i " - -  d X ( k - l )  * 

The finite transformations of the group can be expressed in the form 

(14) ? ( k )  - u U ( k )  ( k )  T =  eaut 2 = euUx - e  x 

(no sum on k )  where a is the group parameter. To consider the symmetry group of a 
differential equation of second order such as 

(15) x i  + g, (x, i, t )  = 0, 

it is necessary to use the twice-extended operator U" in the condition 

U"(Xi + gi) = 0. (16) 

In the case of interest 

xi + n 2 ( t ) x i  = o ( i = l , .  . . , N )  
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this requirement gives rise to the condition 

2 t x m f i f i +  T m n 2  + ~ m , r t  - a 2 X j T m , j  + 2 n 2 x m 5 , t  + i m ( - t , r t  + f i 2 x j t , j )  

- 2 X m x j 5 , t j  + i i . f k T m , j k  - x m . k j i k t , j k  = 0 ( m = l ,  . . , N )  (18) 

* , j  = a*/ax, 

where 

*** = a*/at. 

Equating coefficients of powers of i to zero leads to a system of partial differential 
equations in 17 which can be solved to give 

where 

putting F = p 2  and integrating we get 

p +R2p = p - 3 .  (4) 

The Akm are arbitrary constants. 

group generators 
Using the theory referred to in 5 2, we proceed to calculate the linearly independent 

(23) 

(24) 

a a 
G 1 = p 2 s i n 2 0 - + x j ( p b  sin2i3+cos28)- 

a t  axj 

a a 
G2=p2co~2e- -+x j (pp  cos2e-sin20)- 

a t  d X j  

where, as in § 2, 
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4. Noether’s theorem 

Noether’s theorem gives 

U‘L + &L - f = o 
as the condition that the action integral be invariant under a transformation with first 
extended operator U’. (The function f = f ( X I ,  t )  appears because the Euler-Lagrange 
equation is unaffected by the addition of a total time derivative to the Lagrangian (cf 
Lutzky 1978a).) For each transformation satisfying ( 3 2 )  there is an associated constant 
of motion 

In our case, where the Lagrangian is taken as 

The B k m  are arbitrary constants with the restriction 

B k m  = - B m k .  ( 4 0 )  

Comparison of the form of the generators for the Noether group with the form of those 
for the full group shows that the linearly independent generators here are G I ,  Gz,  G:, 
G;, G5 and Gpml where 

( G6km - G r k )  ( 4 1 )  ~ i k m l  = 

is twice the antisymmetrised Gim operator. The commutators are listed in table 1. Each 
of the generators leads to a constant of motion given by ( 3 3 ) .  They are 

J 1 = i [ ( x k p - i k p ) ( x k b - i k p )  sin 2 8 - X k X k P - ’ s i n  2 8 + 2 X k p - * ( X k b - i k p )  cos 281 

J z = $ [ ( x k p  - i k p ) ( x k b  -,?kp) cos 2 8 - X k X k P - 2  cos 28 - 2 x k p - 1 ( x k p - i k P )  sin 281 

( 4 2 )  

( 4 3 )  
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Table 1. The commutators [Xi, X,] for the infinitesimal operators. GP1 = (G i  - G i ) ,  
GF) = (G; + G I ) ,  

-2G, 
0 

-Gk 
-G; 
-2G, 

0 

0 

-GB 
-G) 

We note that J," and J," are linear constants and that 

J' = J,"J$ 

J~ = 3 (J,"J," - J,"J$ ) 

J~ = & , " ~ 3 "  + J,"J:) 

J $ ~  = J ~ J , "  - J ~ J Y .  

J i J i  + J i J b  is the Fradkin-Gunther-Leach matrix (Gunther and Leach 1977). 

an Abelian subgroup, and we may write explicitly 
The complete solution of the problem is essentially provided by G,", G;;.which form 

( 5 2 )  

These relations are of the same form €or N dimensions as were obtained by Eliezer 
(1978) for three dimensions. 

x k  = p ( ~ :  COS e - J," sin e ) .  
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5. The group structure 

Table 1 gives the commutators for the group generators of 0 3. Using the relation 

[xi, xi] = C$k (53) 

the structure constants Ck. of the associated Lie algebra may be read off. The metric 
tensor of the algebra may be calculated from the formula 

gjj = czc;,. (54) 

(In the case of two index operators the appropriate formulae are, for example, 

The corresponding metric tensor is given by 

gij ,rs  = C$;qCP:mn*) 

Cartan's requirement for semi-simplicity is that the determinant of g j j  is non-vanishing 
(see, for example, Wybourne 1974 or Gilmore 1974). The metric tensor may be shown 
to satisfy this requirement. Moreover, the metric tensor is indefinite and so the Lie 
group is non-compact and is a non-compact form of Cartan's ANtl algebra. 

The full group has N 2  + 4 N  + 3 operators whilst the Noether subgroup has only 
3(N2 + 3N + 6) operators, the difference being 4N(N + 5 ) .  Some subgroups of note are 
the following. 

(i) The N SO(3) subgroups (compact): { X f ,  X i ,  X3}  (k takes a particular value of 
1, .  . . , N for each subgroup) where 

x : = G , " - G ;  

X ~ = G : + G :  

X3 = Gs. 

This corresponds to the SO(3) subgroup which Wulfman and Wybourne (1976) used to 
investigate the periodicity of the motion. Each has negative definite metric 

g . ,  = -2s.. 
11' 

(ii) The subgroup SO(N) corresponding to the &(N - 1) 'angular momentum' 
operators Gkkml. The metric is negative definite, gij , ,  = -2(N - 2)SiBjs, i < j ,  r < s. 

(iii) The Abelian subgroup of G;, G," (fixed k ) ,  which, as noted in § 4, essentially 
describes the motion. 

(iv) The two ISO(N) subgroups corresponding to the $N(N - 1) GLkml operators 
taken with G:, Gfi respectively. We note that ISO(N) is usually taken as the 
inhomogeneous Euclidean group of N translations and i N ( N  - 1) rotations or another 
subgroup of the Galilean group: that of N constant-velocity 'boosts' and $N(N - 1) 
rotations. However, the N translations/boosts (operators a / a x k  and ( k  = 
1,.  . . , N )  respectively) are here replaced by G: = p  cos e ( a / a x k )  or G," = 
p sin e ( a / a x k )  whose finite transformations are 

f k  = x k  cos 8 and i k  = x k  + cup sin 0 (60) 
respectively. 
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Whilst for the free particle the effect of the boost transformation is to change 
momentum, the corresponding effect for the harmonic oscillator of G,", G," is a change 
of amplitude with no change in frequency. 

The full group can now be identified as S L ( N + 2 ,  R) as it is the only form of the 
AN+l  algebra being both non-compact and with the above subgroups. 

In a sense some of these results are to be expected from the work of Wulfman and 
Wybourne (1976) on the one-dimensional simple harmonic oscillator. 

6.  Comments 

The group structure defined by these equations is the same as that for the constant 
oscillator for which p is a constant. For the constant oscillator in three dimensions the 
operator Gs producing the Hamiltonian commutes with the angular momentum 
operators, and the Hamiltonian is rotationally invariant. The corresponding result for 
the time-dependent case is that the Lewis constant is rotationally invariant. To pursue 
this point further we note that 

(61) 

where Gk["' is the first extended operator of GP". In general, if J, is the constant of 
motion produced from (33) by a transformation X ,  satisfying (32), then 

GakmlJ - 5 - 0  

XiJ, = 0 (no sum on i). (62) 

The interpretation of (62) is that as the operator transforms one solution into another 
the value o f f ,  is unchanged. 

For the Noether subgroup (for which constants of motion are available) it is of 
interest to note that some relations between the operators and the constants reflect the 
structure of the subgroup, for example 

GLkJfi = 8 k l  GikJ: = - 8 k l .  (63 )  
Considering the one-dimensional case, we write in ( t ,  x ,  i) space 

G;J4 = (T'3'.V)J4 = 1 and ( T ( 3 ) .  V) J3 = 0 (64) 
where 

V = (a/%, a/&, d / a x )  

Similarly, 

and P3'= (0, p cos 0, p cos e - p - *  sin e). 

T(4'.VJ3 = 1 T'4'.VJ4 = 0. ( 6 5 )  

The relations (64) and (65) indicate the functional independence of the constants J3  and 
J4. 

We may use (63) to calculate GikJI , .  . . , GikJP and similarly for Gkk. We get, 
using (47)-(51), 

G L ~ J ,  = J," G ~ ~ J ~  = -J," 

GLkJ2 = -J," 

GikJ5 = J," 
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Then using these, (62) ,  (47)-(5 1) and noting that the operators Xi  and their extensions 
Xi obey the same commutation relations we can calculate all other such relations for 
the Noether subgroup. We find 

x : J k  = CfkJl (i, k f 3 , 4 )  (67) 
where the X i  are members of the Noether subgroup and the c f k  are the structure 
constants. 

The constants provided by the Noether subgroup play an important auxiliary role in 
the study of the group structure. It would seem desirable to have constants of motion 
corresponding to the other transformations of the full group. A method of calculating 
these constants and investigation of their significance will be the subject of a further 
paper. 
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